Page last updated: 2024-11-09

2-[(3-cyano-6-methyl-2-pyridinyl)thio]-N-(2-thiazolyl)acetamide

Description Research Excerpts Clinical Trials Roles Classes Pathways Study Profile Bioassays Related Drugs Related Conditions Protein Interactions Research Growth Market Indicators

Cross-References

ID SourceID
PubMed CID1233014
CHEMBL ID1386142
CHEBI ID112809

Synonyms (16)

Synonym
AKOS005441492
smr000229405
2-[(3-cyano-6-methyl-2-pyridinyl)sulfanyl]-n-(1,3-thiazol-2-yl)acetamide
MLS000698921 ,
STK334881
2-[(3-cyano-6-methylpyridin-2-yl)sulfanyl]-n-(1,3-thiazol-2-yl)acetamide
CHEBI:112809
2-(3-cyano-6-methylpyridin-2-yl)sulfanyl-n-(1,3-thiazol-2-yl)acetamide
HMS2698M16
2-[(3-cyano-6-methyl-2-pyridinyl)thio]-n-(2-thiazolyl)acetamide
2-(3-cyano-6-methyl-pyridin-2-yl)sulfanyl-n-(1,3-thiazol-2-yl)ethanamide
2-[(3-cyano-6-methyl-2-pyridyl)thio]-n-thiazol-2-yl-acetamide
cid_1233014
bdbm66506
CHEMBL1386142
Q27193268
[information is derived through text-mining from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Drug Classes (1)

ClassDescription
aromatic amideAn amide in which the amide linkage is bonded directly to an aromatic system.
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res]

Protein Targets (27)

Potency Measurements

ProteinTaxonomyMeasurementAverage (µ)Min (ref.)Avg (ref.)Max (ref.)Bioassay(s)
acid sphingomyelinaseHomo sapiens (human)Potency31.622814.125424.061339.8107AID504937
Niemann-Pick C1 disease protein, partialHomo sapiens (human)Potency1.11750.628410.805425.0177AID720527
ATAD5 protein, partialHomo sapiens (human)Potency2.21330.004110.890331.5287AID504466; AID504467
TDP1 proteinHomo sapiens (human)Potency5.17350.000811.382244.6684AID686978
apical membrane antigen 1, AMA1Plasmodium falciparum 3D7Potency7.94330.707912.194339.8107AID720542
regulator of G-protein signaling 4Homo sapiens (human)Potency17.78280.531815.435837.6858AID504845
euchromatic histone-lysine N-methyltransferase 2Homo sapiens (human)Potency44.66840.035520.977089.1251AID504332
NPC intracellular cholesterol transporter 1 precursorHomo sapiens (human)Potency0.95590.01262.451825.0177AID485313; AID493203
chromobox protein homolog 1Homo sapiens (human)Potency100.00000.006026.168889.1251AID540317
importin subunit beta-1 isoform 1Homo sapiens (human)Potency67.74075.804836.130665.1308AID540253; AID540263
ras-related protein Rab-9AHomo sapiens (human)Potency0.85280.00022.621531.4954AID485297; AID493200; AID624493; AID624501; AID720525
snurportin-1Homo sapiens (human)Potency67.74075.804836.130665.1308AID540253; AID540263
peptidyl-prolyl cis-trans isomerase NIMA-interacting 1Homo sapiens (human)Potency79.43280.425612.059128.1838AID504891
GTP-binding nuclear protein Ran isoform 1Homo sapiens (human)Potency35.48135.804816.996225.9290AID540253
urokinase-type plasminogen activator precursorMus musculus (house mouse)Potency6.30960.15855.287912.5893AID540303
plasminogen precursorMus musculus (house mouse)Potency6.30960.15855.287912.5893AID540303
urokinase plasminogen activator surface receptor precursorMus musculus (house mouse)Potency6.30960.15855.287912.5893AID540303
gemininHomo sapiens (human)Potency17.35820.004611.374133.4983AID624296; AID624297
survival motor neuron protein isoform dHomo sapiens (human)Potency1.77830.125912.234435.4813AID1458
muscleblind-like protein 1 isoform 1Homo sapiens (human)Potency4.46680.00419.962528.1838AID2675
relaxin receptor 1 isoform 1Homo sapiens (human)Potency39.81070.038814.350143.6206AID2676
neuropeptide S receptor isoform AHomo sapiens (human)Potency25.11890.015812.3113615.5000AID1461
Guanine nucleotide-binding protein GHomo sapiens (human)Potency15.84891.995325.532750.1187AID624287
Inositol monophosphatase 1Rattus norvegicus (Norway rat)Potency12.58931.000010.475628.1838AID1457
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Activation Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, BCL-2-RELATED PROTEIN A1Homo sapiens (human)EC50 (µMol)350.00008.0570121.1218338.0000AID2765
bcl-2-like protein 11 isoform 1Homo sapiens (human)EC50 (µMol)350.00008.0570121.1218338.0000AID2765
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Other Measurements

ProteinTaxonomyMeasurementAverageMin (ref.)Avg (ref.)Max (ref.)Bioassay(s)
Chain A, BCL-2-RELATED PROTEIN A1Homo sapiens (human)AC50350.00000.920095.9176498.8000AID449754; AID449755; AID449757
Bcl-2-like protein 11Homo sapiens (human)AC50350.00009.841085.8882287.1000AID449757
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023]

Biological Processes (42)

Processvia Protein(s)Taxonomy
intrinsic apoptotic signaling pathway in response to DNA damageBcl-2-like protein 11Homo sapiens (human)
in utero embryonic developmentBcl-2-like protein 11Homo sapiens (human)
B cell homeostasisBcl-2-like protein 11Homo sapiens (human)
kidney developmentBcl-2-like protein 11Homo sapiens (human)
myeloid cell homeostasisBcl-2-like protein 11Homo sapiens (human)
apoptotic processBcl-2-like protein 11Homo sapiens (human)
cell-matrix adhesionBcl-2-like protein 11Homo sapiens (human)
spermatogenesisBcl-2-like protein 11Homo sapiens (human)
male gonad developmentBcl-2-like protein 11Homo sapiens (human)
post-embryonic developmentBcl-2-like protein 11Homo sapiens (human)
mammary gland developmentBcl-2-like protein 11Homo sapiens (human)
positive regulation of protein-containing complex assemblyBcl-2-like protein 11Homo sapiens (human)
response to endoplasmic reticulum stressBcl-2-like protein 11Homo sapiens (human)
tube formationBcl-2-like protein 11Homo sapiens (human)
odontogenesis of dentin-containing toothBcl-2-like protein 11Homo sapiens (human)
regulation of apoptotic processBcl-2-like protein 11Homo sapiens (human)
T cell homeostasisBcl-2-like protein 11Homo sapiens (human)
positive regulation of apoptotic processBcl-2-like protein 11Homo sapiens (human)
positive regulation of neuron apoptotic processBcl-2-like protein 11Homo sapiens (human)
ear developmentBcl-2-like protein 11Homo sapiens (human)
positive regulation of cell cycleBcl-2-like protein 11Homo sapiens (human)
regulation of organ growthBcl-2-like protein 11Homo sapiens (human)
developmental pigmentationBcl-2-like protein 11Homo sapiens (human)
regulation of developmental pigmentationBcl-2-like protein 11Homo sapiens (human)
spleen developmentBcl-2-like protein 11Homo sapiens (human)
thymus developmentBcl-2-like protein 11Homo sapiens (human)
positive regulation of T cell apoptotic processBcl-2-like protein 11Homo sapiens (human)
thymocyte apoptotic processBcl-2-like protein 11Homo sapiens (human)
cellular response to glucocorticoid stimulusBcl-2-like protein 11Homo sapiens (human)
positive regulation of release of cytochrome c from mitochondriaBcl-2-like protein 11Homo sapiens (human)
extrinsic apoptotic signaling pathway in absence of ligandBcl-2-like protein 11Homo sapiens (human)
positive regulation of mitochondrial membrane permeability involved in apoptotic processBcl-2-like protein 11Homo sapiens (human)
positive regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathwayBcl-2-like protein 11Homo sapiens (human)
apoptotic process involved in embryonic digit morphogenesisBcl-2-like protein 11Homo sapiens (human)
positive regulation of IRE1-mediated unfolded protein responseBcl-2-like protein 11Homo sapiens (human)
positive regulation of fibroblast apoptotic processBcl-2-like protein 11Homo sapiens (human)
meiosis IBcl-2-like protein 11Homo sapiens (human)
negative regulation of inflammatory response to antigenic stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
renal water homeostasisGuanine nucleotide-binding protein GHomo sapiens (human)
G protein-coupled receptor signaling pathwayGuanine nucleotide-binding protein GHomo sapiens (human)
regulation of insulin secretionGuanine nucleotide-binding protein GHomo sapiens (human)
cellular response to glucagon stimulusGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Molecular Functions (5)

Processvia Protein(s)Taxonomy
protein bindingBcl-2-like protein 11Homo sapiens (human)
microtubule bindingBcl-2-like protein 11Homo sapiens (human)
protein kinase bindingBcl-2-like protein 11Homo sapiens (human)
G protein activityGuanine nucleotide-binding protein GHomo sapiens (human)
adenylate cyclase activator activityGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Ceullar Components (6)

Processvia Protein(s)Taxonomy
mitochondrial outer membraneBcl-2-like protein 11Homo sapiens (human)
cytosolBcl-2-like protein 11Homo sapiens (human)
endomembrane systemBcl-2-like protein 11Homo sapiens (human)
Bcl-2 family protein complexBcl-2-like protein 11Homo sapiens (human)
mitochondrionBcl-2-like protein 11Homo sapiens (human)
plasma membraneGuanine nucleotide-binding protein GHomo sapiens (human)
[Information is prepared from geneontology information from the June-17-2024 release]

Bioassays (12)

Assay IDTitleYearJournalArticle
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588497High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588499High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID651635Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Current protocols in cytometry, Oct, Volume: Chapter 13Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2006Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5
Microsphere-based protease assays and screening application for lethal factor and factor Xa.
AID588501High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set2010Assay and drug development technologies, Feb, Volume: 8, Issue:1
High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors.
AID504810Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
AID504812Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign2010Endocrinology, Jul, Volume: 151, Issue:7
A small molecule inverse agonist for the human thyroid-stimulating hormone receptor.
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023]

Research

Studies (5)

TimeframeStudies, This Drug (%)All Drugs %
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's3 (60.00)24.3611
2020's1 (20.00)2.80
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]

Market Indicators

Research Demand Index: 12.56

According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.

MetricThis Compound (vs All)
Research Demand Index12.56 (24.57)
Research Supply Index1.79 (2.92)
Research Growth Index4.36 (4.65)
Search Engine Demand Index0.00 (26.88)
Search Engine Supply Index0.00 (0.95)

This Compound (12.56)

All Compounds (24.57)

Study Types

Publication TypeThis drug (%)All Drugs (%)
Trials0 (0.00%)5.53%
Reviews0 (0.00%)6.00%
Case Studies0 (0.00%)4.05%
Observational0 (0.00%)0.25%
Other5 (100.00%)84.16%
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023]